Docs & Guides
Reading a Pack Response
7 min
learn about the data returned by the paccurate api the api response the paccurate api responds to valid requests with a json body that contains detailed information for the pack, which can be broken out into statistics, a list of boxes, a list of images, and a list of leftovers statistics paccurate returns several high level statistics regarding the performance of the pack request json "totalcost" 486, "boxtypechoicegoalused" "lowest cost" "lenboxes" 1, "lenitems" 7, "lenleftovers" 2, "packtime" 0 005188877, "rendertime" 0 024311464, "totaltime" 0 029500341, totalcost is the estimated costs, in cents, of all the boxes used to cartonize the request this value considers any provided rate tables or costs affiliated with a specific boxtype boxtypechoicegoalused is how the api prioritized the packing and selection of boxes it defaults to "lowest cost" unless specified in the request the other option for this is “most items” (fit as many items per box as possible regardless of cost) lenboxes is the quantity of cartons that were used in completing the pack lenitems is the total number of items across all types that were successfully packed lenleftovers is the number of items that were impossible to pack with the given containers and constraints this is often due to item dimensions or weights that exceed the maximums of the containers provided in the boxtypes object in the request body packtime is the amount of time, in seconds, the api took to place the items in their respective containers rendertime is the amount of time the api took to generate the images (svg or png) to be bundled into the response totaltime is the sum of rendertime and packtime boxes the boxes list contains all of the packed cartons that the api used to pack the items provided in the request within each box, there is a list of the items along with their placement coordinates and a generated unique id for the item along with the list of items, each box in the list contains data for its price, volume and weight utilization as well as more detailed box properties here is an example of the boxes object from a successful pack json { 	"boxes" \[ { "box" { "boxtype" { "centerofmass" { "x" 0, "y" 0, "z" 0 }, "dimensions" { "x" 12, "y" 6, "z" 6 75 }, "itemsinlineoverhang" { "x" 1, "y" 1, "z" 1 }, "name" "small", "price" 0, "ratetable" { "baseprice" 0, "carrier" "", "dimfactor" 0, "priceincreaserates" 0, "rates" null, "service" "", "weights" null, "zone" "" }, "refid" 0, "reservedspace" null, "weightmax" 65, "weighttare" 0 }, "centerofmass" { "x" 4 75, "y" 1 7980769230769236, "z" 3 0000000000000004 }, "centerofmassstring" "\[4 75 1 7980769230769236 3 0000000000000004]", "depthorder" \[ 1, 2, 3, 4, 5 ], "depthorderstring" "\[1 2 3 4 5]", "dimensionalweight" 0, "dimensionalweightused" false, "dimensions" { "x" 12, "y" 6, "z" 6 75 }, "id" 0, "items" \[ { "item" { "centerofmass" { "x" 4 75, "y" 1 625, "z" 2 25 }, "color" "green", "deltacost" 486, "dimensions" { "x" 9 5, "y" 3 25, "z" 4 5 }, "index" 1, "message" "packed #2 in 2 497168ms at 4 934929ms in box(name\ small dimensions \[12,6,6 75] weight 65 index 0)", "name" "dispenser", "origin" { "x" 0, "y" 0, "z" 0 }, "refid" 0, "sequence" "", "uniqueid" "0 0", "virtual" false, "weight" 4 } }, { "item" { "centerofmass" { "x" 2 375, "y" 2 375, "z" 5 }, "color" "blue", "deltacost" 0, "dimensions" { "x" 4 75, "y" 4 75, "z" 1 }, "index" 2, "message" "packed #3 in 22 311µs at 4 99247ms in box(name\ small dimensions \[12,6,6 75] weight 65 index 0)", "name" "tape", "origin" { "x" 0, "y" 0, "z" 4 5 }, "refid" 1, "sequence" "", "uniqueid" "1 0", "virtual" false, "weight" 0 3 } } ], "name" "small", "origin" { "x" 0, "y" 0, "z" 0 }, "price" 486, "refid" 0, "subspace" null, "volumemax" 486, "volumenet" 229 1875, "volumeremaining" 256 8125, "volumereserved" 0, "volumeused" 229 1875, "volumeutilization" 0 4715792181069959, "weightmax" 65, "weightnet" 5 199999999999989, "weightremaining" 59 80000000000001, "weighttare" 0, "weightused" 5 199999999999989, "weightutilization" 0 07999999999999982 } } ], 	"lenboxes" 1 } note that each instance of an item is listed in the items array — this allows paccurate to return placement, cost, and center of mass information for each specific item each box also returns its boxtype attributes that had been defined in the request https //www notion so/getting started with paccurate anatomy of a pack request 30c4c54a0f0f4140bccf1cacbdf22540 , along with its dimensional weight and whether or not dimensional weight was used when assessing the cost of the box paccurate also returns any ratetable information that applies to the box the boxes array is very helpful if you want to render out any sort of list of items per box or provide cost and volume reporting on the boxes or items within them images the images returned from a pack request can be used to help packers place items into containers, as well as provide a representation of how paccurate sees the item and carton data by default, paccurate returns an svgs list you can change this format to png by changing the imageformat in your request , and if you can disable images from being returned by setting includeimages to false in your request we encourage our users to leverage the returned svgs whenever possible each element in the svgs list is the html markup to render the svg ( scalable vector graphics https //developer mozilla org/en us/docs/web/svg ) data for a container and all of the elements within it these elements combined with the boxes list in the response are essential in building any interactive ui with the pack results here is an example of an svg list from a pack response json { "svgs" \[ "\<figure class='box figure' data box index=0>\<svg viewbox=' 63 88834764831843, 77 56207261596573,194 45436482630055,214 33035249352804'>\[\<line data volume index='0' class='volume line' x1='24 5' y1='24 5' x2='24 5' y2='14 293792738403425'/>\n \<line data volume index='0' class='volume line' x1='24 5' y1='24 5' x2='15 661165235168156' y2='29 603103630798287'/>\n \<line data volume index='0' class='volume line' x1='24 5' y1='24 5' x2='33 338834764831844' y2='29 603103630798287'/>\n \<line data volume index='0' class='volume line' x1='24 5' y1='24 5' x2='130 56601717798213' y2='85 73724356957945'/>\n \<line data volume index='0' class='volume line' x1='24 5' y1='24 5' x2=' 63 88834764831843' y2='75 53103630798287'/>\n \<line data volume index='0' class='volume line' x1='24 5' y1='24 5' x2='24 5' y2=' 77 56207261596573'/>\n] \<polygon vector effect='non scaling stroke' data item ref id='1' data volume index='1' data side='\[6 6 12] \[1 0 0]' data direction='0 \[6 6 12] \[1 0 0] \[] \[] \[1,0,0]' data max depth='8 294228634925972' data min depth='3 0980762122193415' class='volume line' points='77 53300858899107,55 118621784789724 130 56601717798213,24 5 24 5, 36 73724356957945 28 53300858899106, 6 118621784789724' style='fill\ green;' />\n\<polygon vector effect='non scaling stroke' data item ref id='1' data volume index='1' data side='\[6 6 12] \[0 1 0]' data direction='1 \[6 6 12] \[0 1 0] \[] \[] \[0,1,0]' data max depth='8 294228634925972' data min depth='3 0980762122193415' class='volume line' points='77 53300858899107,116 35586535436916 77 53300858899107,55 118621784789724 28 53300858899106, 6 118621784789724 28 53300858899106,55 118621784789724' style='fill\ green;' />\n\<polygon vector effect='non scaling stroke' data item ref id='1' data volume index='1' data side='\[6 6 12] \[0 0 1]' data direction='2 \[6 6 12] \[0 0 1] \[] \[] \[0,0,1]' data max depth='8 294228634925972' data min depth='4 830127019788218' class='volume line' points='130 56601717798213,85 73724356957945 130 56601717798213,24 5 77 53300858899107,55 118621784789724 77 53300858899107,116 35586535436916' style='fill\ green;' />\n\<polygon vector effect='non scaling stroke' data item ref id='2' data volume index='2' data side='\[8 75 10 4] \[1 0 0]' data direction='3 \[8 75 10 4] \[1 0 0] \[] \[] \[1,0,0]' data max depth='7 933384716682457' data min depth='5 623983639923954' class='volume line' points=' 28 53300858899106,6 639137292205991 6 822330470336313, 13 773277230987159 28 53300858899106, 34 185691754180304 63 88834764831843, 13 773277230987159' style='fill #511124;' />\n\<polygon vector effect='non scaling stroke' data item ref id='2' data volume index='2' data side='\[8 75 10 4] \[0 1 0]' data direction='4 \[8 75 10 4] \[0 1 0] \[] \[] \[0,1,0]' data max depth='7 933384716682457' data min depth='4 252776750598593' class='volume line' points=' 28 53300858899106,95 94345083117601 28 53300858899106,6 639137292205991 63 88834764831843, 13 773277230987159 63 88834764831843,75 53103630798287' style='fill #511124;' />\n\<polygon vector effect='non scaling stroke' data item ref id='2' data volume index='2' data side='\[8 75 10 4] \[0 0 1]' data direction='5 \[8 75 10 4] \[0 0 1] \[] \[] \[0,0,1]' data max depth='7 933384716682457' data min depth='4 252776750598593' class='volume line' points='6 822330470336313,75 53103630798287 6 822330470336313, 13 773277230987159 28 53300858899106,6 639137292205991 28 53300858899106,95 94345083117601' style='fill #511124;' />\n\<polygon vector effect='non scaling stroke' data item ref id='2' data volume index='3' data side='\[8 75 10 8] \[1 0 0]' data direction='6 \[8 75 10 8] \[1 0 0] \[] \[] \[1,0,0]' data max depth='9 088085255061708' data min depth='6 778684178303205' class='volume line' points='6 822330470336313,27 051551815399137 42 17766952966369,6 6391372922059935 6 822330470336313, 13 773277230987159 28 53300858899106,6 639137292205991' style='fill #511124;' />\n\<polygon vector effect='non scaling stroke' data item ref id='2' data volume index='3' data side='\[8 75 10 8] \[0 1 0]' data direction='7 \[8 75 10 8] \[0 1 0] \[] \[] \[0,1,0]' data max depth='9 088085255061708' data min depth='5 4074772889778435' class='volume line' points='6 822330470336313,116 35586535436916 6 822330470336313,27 051551815399137 28 53300858899106,6 639137292205991 28 53300858899106,95 94345083117601' style='fill #511124;' />\n\<polygon vector effect='non scaling stroke' data item ref id='2' data volume index='3' data side='\[8 75 10 8] \[0 0 1]' data direction='8 \[8 75 10 8] \[0 0 1] \[] \[] \[0,0,1]' data max depth='9 088085255061708' data min depth='5 4074772889778435' class='volume line' points='42 17766952966369,95 94345083117602 42 17766952966369,6 6391372922059935 6 822330470336313,27 051551815399137 6 822330470336313,116 35586535436916' style='fill #511124;' />\n\<polygon vector effect='non scaling stroke' data item ref id='2' data volume index='4' data side='\[8 75 10 12] \[1 0 0]' data direction='9 \[8 75 10 12] \[1 0 0] \[] \[] \[1,0,0]' data max depth='10 24278579344096' data min depth='7 933384716682457' class='volume line' points='42 17766952966369,47 46396633859229 77 53300858899107,27 051551815399144 42 17766952966369,6 6391372922059935 6 822330470336313,27 051551815399137' style='fill #511124;' />\n\<polygon vector effect='non scaling stroke' data item ref id='2' data volume index='4' data side='\[8 75 10 12] \[0 1 0]' data direction='10 \[8 75 10 12] \[0 1 0] \[] \[] \[0,1,0]' data max depth='10 24278579344096' data min depth='6 562177827357096' class='volume line' points='42 17766952966369,136 76827987756232 42 17766952966369,47 46396633859229 6 822330470336313,27 051551815399137 6 822330470336313,116 35586535436916' style='fill #511124;' />\n\<polygon vector effect='non scaling stroke' data item ref id='2' data volume index='4' data side='\[8 75 10 12] \[0 0 1]' data direction='11 \[8 75 10 12] \[0 0 1] \[] \[] \[0,0,1]' data max depth='10 24278579344096' data min depth='6 562177827357096' class='volume line' points='77 53300858899107,116 35586535436916 77 53300858899107,27 051551815399144 42 17766952966369,47 46396633859229 42 17766952966369,136 76827987756232' style='fill #511124;' />\n \[\<line data volume index='0' class='volume line' x1='130 56601717798213' y1='85 73724356957945' x2='42 17766952966369' y2='136 76827987756232'/>\n \<line data volume index='0' class='volume line' x1='130 56601717798213' y1='85 73724356957945' x2='130 56601717798213' y2=' 16 32482904638629'/>\n \<line data volume index='0' class='volume line' x1='42 17766952966369' y1='136 76827987756232' x2=' 63 88834764831843' y2='75 53103630798287'/>\n \<line data volume index='0' class='volume line' x1='42 17766952966369' y1='136 76827987756232' x2='42 17766952966369' y2='34 706207261596575'/>\n \<line data volume index='0' class='volume line' x1=' 63 88834764831843' y1='75 53103630798287' x2=' 63 88834764831843' y2=' 26 531036307982866'/>\n \<line data volume index='0' class='volume line' x1=' 63 88834764831843' y1=' 26 531036307982866' x2='24 5' y2=' 77 56207261596573'/>\n \<line data volume index='0' class='volume line' x1=' 63 88834764831843' y1=' 26 531036307982866' x2='42 17766952966369' y2='34 706207261596575'/>\n \<line data volume index='0' class='volume line' x1='24 5' y1=' 77 56207261596573' x2='130 56601717798213' y2=' 16 32482904638629'/>\n \<line data volume index='0' class='volume line' x1='130 56601717798213' y1=' 16 32482904638629' x2='42 17766952966369' y2='34 706207261596575'/>\n]\</svg>\<figcaption>\</figcaption>\</figure>", "\<figure class='box figure' data box index=1>\<svg viewbox=' 28 53300858899106, 179 62414523193146,106 06601717798213,265 3613888015109'>\[\<line data volume index='5' class='volume line' x1='24 5' y1='24 5' x2='24 5' y2='14 293792738403425'/>\n \<line data volume index='5' class='volume line' x1='24 5' y1='24 5' x2='15 661165235168156' y2='29 603103630798287'/>\n \<line data volume index='5' class='volume line' x1='24 5' y1='24 5' x2='33 338834764831844' y2='29 603103630798287'/>\n \<line data volume index='5' class='volume line' x1='24 5' y1='24 5' x2='77 53300858899107' y2='55 118621784789724'/>\n \<line data volume index='5' class='volume line' x1='24 5' y1='24 5' x2=' 28 53300858899106' y2='55 118621784789724'/>\n \<line data volume index='5' class='volume line' x1='24 5' y1='24 5' x2='24 5' y2=' 179 62414523193146'/>\n] \<polygon vector effect='non scaling stroke' data item ref id='0' data volume index='6' data side='\[11 3 3] \[1 0 0]' data direction='0 \[11 3 3] \[1 0 0] \[] \[] \[1,0,0]' data max depth='6 273502692762282' data min depth='4 541451885193405' class='volume line' points='24 5, 57 14965809277258 51 01650429449553, 72 45896898516744 24 5, 87 76827987756232 2 0165042944955296, 72 45896898516744' style='fill\ red;' />\n\<polygon vector effect='non scaling stroke' data item ref id='0' data volume index='6' data side='\[11 3 3] \[0 1 0]' data direction='1 \[11 3 3] \[0 1 0] \[] \[] \[0,1,0]' data max depth='6 273502692762282' data min depth='2 2320508084349027' class='volume line' points='24 5,55 118621784789724 24 5, 57 14965809277258 2 0165042944955296, 72 45896898516744 2 0165042944955296,39 80931089239486' style='fill\ red;' />\n\<polygon vector effect='non scaling stroke' data item ref id='0' data volume index='6' data side='\[11 3 3] \[0 0 1]' data direction='2 \[11 3 3] \[0 0 1] \[] \[] \[0,0,1]' data max depth='6 273502692762282' data min depth='2 2320508084349027' class='volume line' points='51 01650429449553,39 80931089239486 51 01650429449553, 72 45896898516744 24 5, 57 14965809277258 24 5,55 118621784789724' style='fill\ red;' />\n\<polygon vector effect='non scaling stroke' data item ref id='0' data volume index='7' data side='\[11 3 6] \[1 0 0]' data direction='3 \[11 3 6] \[1 0 0] \[] \[] \[1,0,0]' data max depth='7 13952809654672' data min depth='5 4074772889778435' class='volume line' points='51 01650429449553, 41 84034720037773 77 53300858899107, 57 1496580927726 51 01650429449553, 72 45896898516744 24 5, 57 14965809277258' style='fill\ red;' />\n\<polygon vector effect='non scaling stroke' data item ref id='0' data volume index='7' data side='\[11 3 6] \[0 1 0]' data direction='4 \[11 3 6] \[0 1 0] \[] \[] \[0,1,0]' data max depth='7 13952809654672' data min depth='3 0980762122193415' class='volume line' points='51 01650429449553,70 42793267718457 51 01650429449553, 41 84034720037773 24 5, 57 14965809277258 24 5,55 118621784789724' style='fill\ red;' />\n\<polygon vector effect='non scaling stroke' data item ref id='0' data volume index='7' data side='\[11 3 6] \[0 0 1]' data direction='5 \[11 3 6] \[0 0 1] \[] \[] \[0,0,1]' data max depth='7 13952809654672' data min depth='3 0980762122193415' class='volume line' points='77 53300858899107,55 118621784789724 77 53300858899107, 57 1496580927726 51 01650429449553, 41 84034720037773 51 01650429449553,70 42793267718457' style='fill\ red;' />\n\<polygon vector effect='non scaling stroke' data item ref id='0' data volume index='8' data side='\[11 6 3] \[1 0 0]' data direction='6 \[11 6 3] \[1 0 0] \[] \[] \[1,0,0]' data max depth='7 139528096546721' data min depth='5 4074772889778435' class='volume line' points=' 2 0165042944955296, 41 840347200377735 24 5, 57 14965809277258 2 0165042944955296, 72 45896898516744 28 53300858899106, 57 1496580927726' style='fill\ red;' />\n\<polygon vector effect='non scaling stroke' data item ref id='0' data volume index='8' data side='\[11 6 3] \[0 1 0]' data direction='7 \[11 6 3] \[0 1 0] \[] \[] \[0,1,0]' data max depth='7 139528096546721' data min depth='3 0980762122193415' class='volume line' points=' 2 0165042944955296,70 42793267718457 2 0165042944955296, 41 840347200377735 28 53300858899106, 57 1496580927726 28 53300858899106,55 118621784789724' style='fill\ red;' />\n\<polygon vector effect='non scaling stroke' data item ref id='0' data volume index='8' data side='\[11 6 3] \[0 0 1]' data direction='8 \[11 6 3] \[0 0 1] \[] \[] \[0,0,1]' data max depth='7 139528096546721' data min depth='3 0980762122193415' class='volume line' points='24 5,55 118621784789724 24 5, 57 14965809277258 2 0165042944955296, 41 840347200377735 2 0165042944955296,70 42793267718457' style='fill\ red;' />\n\<polygon vector effect='non scaling stroke' data item ref id='0' data volume index='9' data side='\[11 6 6] \[1 0 0]' data direction='9 \[11 6 6] \[1 0 0] \[] \[] \[1,0,0]' data max depth='8 00555350033116' data min depth='6 273502692762282' class='volume line' points='24 5, 26 531036307982866 51 01650429449553, 41 84034720037773 24 5, 57 14965809277258 2 0165042944955296, 41 840347200377735' style='fill\ red;' />\n\<polygon vector effect='non scaling stroke' data item ref id='0' data volume index='9' data side='\[11 6 6] \[0 1 0]' data direction='10 \[11 6 6] \[0 1 0] \[] \[] \[0,1,0]' data max depth='8 00555350033116' data min depth='3 96410161600378' class='volume line' points='24 5,85 73724356957945 24 5, 26 531036307982866 2 0165042944955296, 41 840347200377735 2 0165042944955296,70 42793267718457' style='fill\ red;' />\n\<polygon vector effect='non scaling stroke' data item ref id='0' data volume index='9' data side='\[11 6 6] \[0 0 1]' data direction='11 \[11 6 6] \[0 0 1] \[] \[] \[0,0,1]' data max depth='8 00555350033116' data min depth='3 96410161600378' class='volume line' points='51 01650429449553,70 42793267718457 51 01650429449553, 41 84034720037773 24 5, 26 531036307982866 24 5,85 73724356957945' style='fill\ red;' />\n \[\<line data volume index='5' class='volume line' x1='77 53300858899107' y1='55 118621784789724' x2='24 5' y2='85 73724356957945'/>\n \<line data volume index='5' class='volume line' x1='77 53300858899107' y1='55 118621784789724' x2='77 53300858899107' y2=' 149 00552344714174'/>\n \<line data volume index='5' class='volume line' x1='24 5' y1='85 73724356957945' x2=' 28 53300858899106' y2='55 118621784789724'/>\n \<line data volume index='5' class='volume line' x1='24 5' y1='85 73724356957945' x2='24 5' y2=' 118 38690166235202'/>\n \<line data volume index='5' class='volume line' x1=' 28 53300858899106' y1='55 118621784789724' x2=' 28 53300858899106' y2=' 149 00552344714174'/>\n \<line data volume index='5' class='volume line' x1=' 28 53300858899106' y1=' 149 00552344714174' x2='24 5' y2=' 179 62414523193146'/>\n \<line data volume index='5' class='volume line' x1=' 28 53300858899106' y1=' 149 00552344714174' x2='24 5' y2=' 118 38690166235202'/>\n \<line data volume index='5' class='volume line' x1='24 5' y1=' 179 62414523193146' x2='77 53300858899107' y2=' 149 00552344714174'/>\n \<line data volume index='5' class='volume line' x1='77 53300858899107' y1=' 149 00552344714174' x2='24 5' y2=' 118 38690166235202'/>\n]\</svg>\<figcaption>\</figcaption>\</figure>", "\<figure class='box figure' data box index=2>\<svg viewbox=' 37 3718433538229, 46 943450831176015,106 06601717798212,132 68069440075547'>\[\<line data volume index='10' class='volume line' x1='24 5' y1='24 5' x2='24 5' y2='14 293792738403425'/>\n \<line data volume index='10' class='volume line' x1='24 5' y1='24 5' x2='15 661165235168156' y2='29 603103630798287'/>\n \<line data volume index='10' class='volume line' x1='24 5' y1='24 5' x2='33 338834764831844' y2='29 603103630798287'/>\n \<line data volume index='10' class='volume line' x1='24 5' y1='24 5' x2='68 69417382415922' y2='50 01551815399144'/>\n \<line data volume index='10' class='volume line' x1='24 5' y1='24 5' x2=' 37 3718433538229' y2='60 221725415588004'/>\n \<line data volume index='10' class='volume line' x1='24 5' y1='24 5' x2='24 5' y2=' 46 943450831176015'/>\n] \<polygon vector effect='non scaling stroke' data item ref id='3' data volume index='11' data side='\[2 4 3] \[1 0 0]' data direction='0 \[2 4 3] \[1 0 0] \[] \[] \[1,0,0]' data max depth='3 96410161600378' data min depth='1 9433756738400898' class='volume line' points='51 01650429449553,19 396896369201713 24 5,4 087585476806852 10 855339059327374,24 5 15 661165235168156,39 80931089239486' style='fill #6341ec;' />\n\<polygon vector effect='non scaling stroke' data item ref id='3' data volume index='11' data side='\[2 4 3] \[0 1 0]' data direction='1 \[2 4 3] \[0 1 0] \[] \[] \[0,1,0]' data max depth='3 96410161600378' data min depth='2 5207259430297153' class='volume line' points='15 661165235168156,60 22172541558801 15 661165235168156,39 80931089239486 10 855339059327374,24 5 10 855339059327374,44 91241452319314' style='fill #6341ec;' />\n\<polygon vector effect='non scaling stroke' data item ref id='3' data volume index='11' data side='\[2 4 3] \[0 0 1]' data direction='2 \[2 4 3] \[0 0 1] \[] \[] \[0,0,1]' data max depth='3 96410161600378' data min depth='2 2320508084349027' class='volume line' points='51 01650429449553,39 80931089239486 51 01650429449553,19 396896369201713 15 661165235168156,39 80931089239486 15 661165235168156,60 22172541558801' style='fill #6341ec;' />\n\<polygon vector effect='non scaling stroke' data item ref id='3' data volume index='12' data side='\[4 4 3] \[1 0 0]' data direction='3 \[4 4 3] \[1 0 0] \[] \[] \[1,0,0]' data max depth='4 541451885193405' data min depth='2 5207259430297153' class='volume line' points='51 01650429449553, 1 0155181539914349 24 5, 16 324829046386295 10 855339059327374,4 087585476806852 15 661165235168156,19 396896369201713' style='fill #6341ec;' />\n\<polygon vector effect='non scaling stroke' data item ref id='3' data volume index='12' data side='\[4 4 3] \[0 1 0]' data direction='4 \[4 4 3] \[0 1 0] \[] \[] \[0,1,0]' data max depth='4 541451885193405' data min depth='3 0980762122193415' class='volume line' points='15 661165235168156,39 80931089239486 15 661165235168156,19 396896369201713 10 855339059327374,4 087585476806852 10 855339059327374,24 5' style='fill #6341ec;' />\n\<polygon vector effect='non scaling stroke' data item ref id='3' data volume index='12' data side='\[4 4 3] \[0 0 1]' data direction='5 \[4 4 3] \[0 0 1] \[] \[] \[0,0,1]' data max depth='4 541451885193405' data min depth='2 8094010776245284' class='volume line' points='51 01650429449553,19 396896369201713 51 01650429449553, 1 0155181539914349 15 661165235168156,19 396896369201713 15 661165235168156,39 80931089239486' style='fill #6341ec;' />\n \[\<line data volume index='10' class='volume line' x1='68 69417382415922' y1='50 01551815399144' x2='6 822330470336319' y2='85 73724356957945'/>\n \<line data volume index='10' class='volume line' x1='68 69417382415922' y1='50 01551815399144' x2='68 69417382415922' y2=' 21 42793267718458'/>\n \<line data volume index='10' class='volume line' x1='6 822330470336319' y1='85 73724356957945' x2=' 37 3718433538229' y2='60 221725415588004'/>\n \<line data volume index='10' class='volume line' x1='6 822330470336319' y1='85 73724356957945' x2='6 822330470336319' y2='14 293792738403427'/>\n \<line data volume index='10' class='volume line' x1=' 37 3718433538229' y1='60 221725415588004' x2=' 37 3718433538229' y2=' 11 221725415588008'/>\n \<line data volume index='10' class='volume line' x1=' 37 3718433538229' y1=' 11 221725415588008' x2='24 5' y2=' 46 943450831176015'/>\n \<line data volume index='10' class='volume line' x1=' 37 3718433538229' y1=' 11 221725415588008' x2='6 822330470336319' y2='14 293792738403427'/>\n \<line data volume index='10' class='volume line' x1='24 5' y1=' 46 943450831176015' x2='68 69417382415922' y2=' 21 42793267718458'/>\n \<line data volume index='10' class='volume line' x1='68 69417382415922' y1=' 21 42793267718458' x2='6 822330470336319' y2='14 293792738403427'/>\n]\</svg>\<figcaption>\</figcaption>\</figure>" 	] } and one element of the array, formatted and rendered as html html 	 \[ 	 \n 	 \n 	 \n 	 \n 	 \n 	 \n] 	 \n 	 \n 	 \n 	 \n 	 \n 	 \n 	 \n 	 \n 	 \n 	 \n 	 \n 	 \n \[ 	 \n 	 \n 	 \n 	 \n 	 \n 	 \n 	 \n 	 \n 	 \n] 		 		 	 if imageformat is set to “png”, the response contains an images array of objects for each box, each containing png data png rendering does increase response time more than svg json { 	"images" \[ { "boxindex" 0, "format" "png", "data" "ivborw0kggoaaaansuheugaaauoaaafkcaiaaad0s4fsaaatbkleqvr4nozdetiva9s/8fukcclpkpq0uyqaefj28yiryhapu2yrmecxswyrjs2yfuosgkgphtjklszzbp2ove3ffp+n3douc1wwu/pz13no7a/rpd7ja93rxtd53qwucovacjhrqofeaelor8f6i0rawg+esavrjrbpyb0rii2sn0kkhfvgilsw3girftybidlceinewlhvhegl640qawg9esitrddcpix1roi0sn4ikrbwgyhswnojrfpyb4ric+uneglhvreilaw3qqsf9uaitldecjew1hsh0sj6i0rawg+esavrjrbpyb0rii2sn0kkhfvgilsw3girftybidlceinewlhvhegl640qawg9esitrddcpix1roi0rnc9bw1tr40a5ebmntwlqyhgjch6e3t78/pzv2u5450mlvv6wwdljovxrw/3ohcioxqucmw41/aniiiiagmdbquffv3gs09its/iebctk35df3diph0dxbbl7iifc4z7jqjrihft76txr/r4+eybnm2v3atzcycn/xco3kp/o/lqfptby2nrnf7+/so6uoroxqi4ol9586amjexoakik05zjvxb83e1pymgtpjupnoo7b+a8iz6enj99mqjrhjp+975582zoacgdhz2k6ti1uxf+8wx/+e79t8hbqrethmkxtfbha7zv3/6zfosqzahrej969ehwvnbq1kngxsalld4zszj+9mwfrfeqotxaf4uusqz8rq6u8+bn+8hrrygw0dzfewtrq6ojy2bgyfdxl+tytpp2jvhrrwa5fajtfoiuvu4btvnjsk9p7wesfcfar1v1tkhiufruzmvlu5kmxhyvmdlnj/zzgooxpbj09nsxnydadxswnc06nda1l2ceh7e39w9ymkk0i1yuzisqkiwtlauqqlq2sq0x4/3jwjs9fah4ukf/ffyoxss1blhidj/fff7zv/rcxfknbvshnbxvfl+uczgeuhxr1h/zfwrctium3r29vlz27du3zmmssbubow5/ytxqaemxk39b2c81wd3lmonvn3+srf3kxzgkydsjkm2m/htcgw13795dvft0/zapei0a5npnzgriskq+efpg33txfrga0qz0x3jxrt28d2+umnhyvmwwl+wd+qkhqafifyt3ulyprthx16di4qinamn5ca6hovfywgi8b5rieq5//ut/xpx/orcwwcf2pduesdlq41q1fwc/pdwh/fa5v/phrldnikygrd6jr48werg54bx6f73gc/uekpbqzofryb9qcshdddgaenv63xqs3+fxo1keb9q0cracem0atotzyma/fw+l4nbgs9dzvvw/7e/vr6iowl58/pn7ujj8fak2zx/trmaagmcwwizunjkl6+injycnv1pacghbigyn27v37bktnlw99dy3qs/h7pgxdahwmxbm+a/dpv/r3butrb23t5enjw30aiahnzq1du43ze9q6zfwlf0ntxi2noqlr895ptkoqejl5qvlqijwdpottwuc3okxaso7fu7wuaxscvpll+7u7qn7wedpt8/bmfhvbhmemweic3yysjc5j6vunf2iie1tvycvbnjhfy5bvxn89uyfk/z8/aajcneamvhi7oauktd3tjiyri+q9bcpepjpfwwmddq3nff29kzinmtmzptzeehbqek3vqvjmm+c7mmyjwa2eg3rneeea9zlcresmjmqkaalqyhgdppf+sc/bgzq2g9ys76p86t2gnbguqgl84729u6ehjzw1tgmn995/gkkhxlmtf7o9aa9x0q0rarhy8vlqg6yesa9frmbmxspdw8sbkhhrvv1hpkc8fa450nmxsfg30wjrnuzmtgpg8f8rflvva1q5m8hbwmr0k0i0p/zkvm1bkfnnvd+smxtfg8pd1gcqsoiji7opyejnv9rjmqyewo2kd5z8/sa6dzbefxcbilnrrx0uczkr6pjhmnwsumawpnngm0smbyloamcamahca0xwqx3zuxli+fpt0rnvht6e011p/jgh+hnymbrk1zmfxwnvmf1alfxztyqwppydttirj1vs8w+lskpmzsubatb6oejryvzluawwqjctk7ovz/udnv1pabn2jzopqmfzwo2ylnqbnivgxyknd79jvpoq6r5kix9r5pc+afcj5uh1g95joh4enpycx1mpx1cnivw6j04ofhywnjx1zexb+6yswm+exfjq2pu1fswm+/nzwun8xuc/9ks4kyny8ixy0c7xzkbv3qqlot3qjcxvj9uw3/q3d0dvbkefgkaudivrq5++vqpx8sj/pz8/+w2qratosyaag5lct09lq5fzg2qvxsb7bfxzpmyfhgfmqqnpntukxwrsjatyksv5bxuzn7ku5gzodgyfolqtzdm795tbw1fhuxs7onn837vze2hn3ktp/t1jf06grn3b4nficfevhupr910ylf5ahd8u72l210vsb1sopwvlyymdhglcp0gw1nvcy6shr0dc+fozwb+tnvjhe3tv9995havo348o7vd4lk8x5o8+ylojt6wiikrkr1attlbvzbbql4+qjxtntp70govl69p06bbqhd6eyat3vt0dmcoljptbg47iqiivq4umdr1fell8mutff2wghpy8uqoniwaz8hkc0tpgs94wehc5b8fyhdtvhvxcqgvbkhva9g+ew8mulrgim7wujcybjw4zrin50ldubthuzpaulfjpvqgfmnyfi3itl26sleofe+sogpbzsnctqosvfjycb1d+hz+ysehibaqhl6vyt5rltc318lcyrctwep7zwxu4jde/x39wc/fmhind/cszvpz167hbk/nbhr+wpn6hycf9d1+gyw0nnv7hevsqpxkzwullq2/nkgiejrxlgjmtiyzzthrjvz2bva+tla2xsq+8ot5n4ol6bspebptl851+olghs4dzvld7qog3utldglhs1+klyfapusbstrhx4ete/7nbifq0es9hzg4oesgeqnuflsxb97ligiitrbwmztlwkrnoilojytgof/o54spurbfu2ayht5qzwl+qlgwf7oz9ukib+aezyecnz3bk0eijibqtrbet0+ptrb262cj+iorpffobueulpyesusor+k9djbhrxemocf+9+ktppvim3ldy/acqwis7j/8vdbm11fdqwmcghaabdv7sfzwlpmupcvlgbs9yemtwwehpt09kq+fnwzohs1ib2exqfcahzzdovaiivlcbjqpgohonab+dmiq6/qytoqpnmxjyymhiqelqehb0wk9h0rhr7vzg60r4tmpkwkoaw5udrv4mpzw+8xz2uj8bme5vvwtqsffehtckorx0uzusldbhwu4jhx8fdg4omclqegr0w69h1hbw1+kdldfi3hwj7ycndu1tohjtx/x79g81cjwpjjnyemqa6f3sxdyhd/8/kt617gr+vysb5bc9smodg7geis+bq3xmycilpywpt29otf3jdrwiqndp0jnf7ztckxubonx05yzyzn8e9n160wogvuycvnti3ebq/yojz+/3a6vr6+mpgyoqejlrkc9h6snp1sykhfymnvrs3owqw54iaiiq7przsitt8jxeycyejkjzjj++wpb/txaweboap65hfzvc7f9eqtgiy217z4gd/s/trwxsrexf4efipqfi6beq8lcwjydzwxfes2owm9qntq0+eu+ujbqsujkoo+tadinulhr40thwkbrljf75i6zagt5lliaape2ekakj4/phanajt0ifdyiq/cqc3pz2cthh/cuu9wkl2dvzevru9/flnyryxnrqwpvlheekzpayepsulbkslcscjjkwnb2jp+zfts17e3twseifwje1nto+4qbgufvuyajhpiiwhryyodawoosxbovjl4bwsjo7prv8o1lly699yio3azmf9xvczjklgnyq6rofx19frx4xwqe/jzs6z0kotnzykrl5jq2rymzfujeso729npxm/xicmzxj4sieksnb+5m7ezodqsvujbaedrrcjxewlfv5m18j9iw3cbgzvxq//kanos+xsiu95dawmbt7lbbzoybq8p7ufdx5xasfo1+zw9rjztylglndi2xsnmy+8btmzwdof6aea8kzcfdyja0n58fkytwyw9czkj3egnj48s4ac2l5btkf4jdysvl1u/gv33so6zcs18e/ivcullpcy9yisnuu7euwcfxap9d9n92yi+wra0toat9yshtb4igysrkjiymmqufmx8r458hvjxd19ex9cdbjujzgcz6pxolfi9ia6/nbhr+wix6xuee9jxlwsgnto7l3us2ndq8coaaoat9mkhv7yhx8fg25ocx8hk4mq4bnqp4xkvra2ti9ipww+8ffrmfe8e3znxxdxw0k+jugddx/u1qg/cyorai1dv47qhmbnt7e1frufbi0k+ghpue4u3t7e9tp7czx095btiktrbwzjcp8und7u3ttfxmgnnevpiga1m8ddb40ykq4phsj0nf4q4zqnpx+fr6jhshpf4o/vjiw+8hurq66clxda6ibpgebw7jy3t31ofes/uagtbflt+ap6mtbph778xwppxiw3hdlshhs2p8suicyxqufkytrceh6bdb8notbffqugcguyvcozw4umbeboccvk9pz7x4j26rlydxjpv3x8i56tohsx8ncoushp4xfpoq8di/rk0mk/ie9bkagu7fvx8cgkip/puecv36dqcrbcgfu52n4qesnzc1e4cnn0+oef/j4enad86prgxrm39hr9bzhw8vxgm8takmrowuyt2gnh47ozsrerhwyhcj/sr1hulq6hri73jw19kjisvbidxv1zzesrm5lcp7utxv4efkph5caehyonsrveolgbelzjhncm+xdqgigdmgee2byorxqvfqc060tlsym27pka+qfz8dtkeq6u9fgnumuqg6s5p5q0xhzzmmjzeuk19ge7ethhljnzmusexjscnkygocgsjnl6v3kjcvxxpr7rzdyhbszw0pf/ccps7ozqjlaf6xc3hnjysmfayvpn9gipr0/vnevjurcuxtleact4okd2kdhoag+/bta4cgmvlf6z3k0qvlzjbhvgrosnoh3+vqaghwcbh7navmy29tbi7dn8wnjzcyjrvtfbe+xlpv0urrmszyodvr0vficp4ovuqov3s9h9jb258n91bdlxrod7wplzwvyha3ahv6j6jnvtw9a5yt+qdc1lvskejuwerlceh6fggeu4boog2bgygjr48g56crduv9h66ulh0dnbzsrao1lzkis2ahgwmd8feybikymmcxunvxz53dal7pxytvvc7ubqjuvpsiz9o4odjlzwulcwtwcbrrsn7/jzmz00xxfjzbwfs9qamcwhk2t7chrt0pjy0rxdi+0ao+m7w9rufjnl+5rlvbsxrrqfhlhydeytfjirgx8d698l00aitcen8qkirk3dfesnswlc4acejdxzprn6skzdr5nvxg2nzgnnevp2rzfe/gzpa/fwdsnobfniqirl/tzkaeou5otkuxlguvbo04wo/ps7kyuni+6jd8som74i8wfp337qhdunsxyaw7z8m6+g7wpkrsc4/y5dizvwpht8tt4t6dcx60aslmf39/bgygca4aqbde/1ntu9oxy8dk8h6yqk9ekqi8w9bx1xctm+ew+wrqllfbxkvzxwpnsqicobuvh3cpfrfwml3h9ecqc55p4kpkvfvvzc3nwsfopmb6/4u0tdrza6vpncwobmvz2cbcqlpbw91d7l5mkjcum+rmb9/nwl/fccc0oketqvfsgidcdbpep6uzmthzs2cpoatrpqz3vwkjcff2pbfjaq7zytfwso2hd8fdeh+/avzrmqlxehh/nici59k1enyl02apd0s9xdggedjcaugdv3ky68b8jycnfn74xxxey7de38du1pt2zuhnbwh5tfbhcz989nlem42ons7abkgompxg87hbxta+1i6xprj59opluzcqufbqedge0sys97epqqrsvpfpae020xqtwgr8klfpd0/4xqf+lwv45rcc8yc/zhxovdtizroskaiaofxbi9eej+ndyttv1c3mzmahiazhvsgskpkstdvmc09wnpizoxz4f7qpqcnbl/hgg5ptg6damswal6aiokxn/n0oojrryo1cyjzghfedo2vz9gzmzrt2wz+dhmgk1hvoz8/p19n6l+xcqzxgy8agdrmemiutbx7qpjx7z3b4btbhjysnhup5+sefpckfsfg+r87p/d47sddz2xnrivhp0ihgyl2pzwbgcp/obs0lkr3rge/afarl96sn1ogzrgymxg78s3jg56hdu1boffs9xngbdsh8vpt+9ykrruuiiil+/v7geeqlsn7fquljid6hdt29/rzhjbbnbt7jqloz0zfixkrsibagu787fg9z/8da6zd8c0nujpdguwbccavq1nq0njygh6dhhfx+buli4uwsnbfycbqayiapyg5oald0vhmvq15hf5f+ufhu1slcbk2riiaw0w4x8rylj4nzni/ernwx+vjx4zt27achoogc9f7opd09a3wc9m0t0d0ap5d81zvco7aj3x2eybg566xg5uxjktnzk19m3xhp8es6f4v7hpslnz2dfyya3wjepx/w+4fq0df5lhjn54dozing6egdawpnrz50p/tq+jsm0z6clczwse2lf996rdzuuee3pqufl713je+ae8wkfsv8/pzaiegnw3r/khl5eyzhttlr0vlqsfdxaa9ja29rdwlmvjhyvlas08uavpemtbvnv2les32pnqvmjix4b/szzhljzyo1ntwnjizaieinwxr/wfevxnu8qbns8xqno7xgklqpdubo8vn5lycozfjvgj/y8pxrj1rwxronjpol3w8elx3sh3trsah5ncbc3hzr1q3gxacfaov9mzg7o4cfusnvfnruhj+4+dajx8gzjygb3sfqoaaa8phhgiase0ppejwlypb43vaeh7x7wrtgktj5jicbmxsfh/wwipqhsn4/sx9/v7a29ovhvx9tfl0nbjyaua+vlyq6osdm7fy5lofu7gylcciykj8opn73uargs+/g5f3zkf+1apwvry81i0e/cnb7p3rx4owj9m6msqy2eljcu4gpfm5tabh2urobwrnj87qtrvpbi/n4sv35+nverget/42sm+e5eu7p96kqjx49qq+vdw5bpwlwexhcuhdb2dzaqpjbwk8khfjzuwxolfbq2agrowfxlungngfpao7zl0yfpf5m2ih60cdx0v6+qretox/zmcwsldzv3gxedpq+sn7dxsbg5mkun5qckmpu+imln24/tg3oymdnpowyzmz0jndo0hipxdy+5wvwax4kxnw4f6kkmznzzc2nl5cxnio+f6z3cgpra9nqwfle02qktkp8ofcwehd3t3fo3yjyyhfhdj9x+jdefaolldzvzm3m/syrvm3gx0gmxhh9w6tcqklc29sbhik+c6z38hv06jg5vilhbga7y9kce5lhiu1ntcdd41oy6/fjc+tqwn85kypa1i6/huu/yvomveolyfzpkec/aglp6enpgumqlbdetciiisldywydgo+joxlgkje5747yjfuoebag86tegcmtf/zfyag0ciqdizap9af8vls3p99vo6hhlyu5ufmmtzvaoqgm601blcwsbsseauxdprrnajzaovciyli9zr6cwcv0jmaziypwbtmfe3leoqfxudlempdvfefknssrq7u7ow8p/hiaawc9au5dxd2ra2vqgjpn1fejlgue8ndz2enod+diqrmsnkfjsfhu1r6+/tdqgot329stxos14oolt8/l3vaql5ks8vlyaoegb4x1plepksmwxgdntgfzmjrmyweewnxq36bvh/fsxcth5vkhfec7wqvfnry2kmrmzfs4pjhrpvxh5qg2d1mvfdts0tlv1qwhok+h9azpwchb3m6ww6tnmwqsboekzlw0cx/ioibexxrx4kxavtr/jze6lvovnbqqab8v7erodddlbcpks7s0ljwvbeegr4h1hgfmtewsyqm09wnv2qc8zb7ohwiiuhcqk794awuol1w7ws9clpco/lhnbymxn/xu2zvmqvnwvezs7b4ehtzc3nssb30b1ntkqkio0ffd39bey6ypjrgq+liy9rz2s8/f4x7w7no6/bjbppbiwlt7lezywht79fyogi+9hz173ats3bp17u7u4bd0bvjvksqhichmupqcmrncjguygyehmjdvvbk7jbyt7ddq4tu2exhuo0equa8+atswc0wd539n/8tj8iezb1unzlyp19hr0dlsaoegz8j6jzy+vr6+njz7ni7sv4hfyr4w/8qukhmib2oa+5ipk+g7wrms3lt6vva5xtrz1uumm9bwoshs0nldunxghpqjrpdidxivcoarku39y7fjam8/6+vtdq9ojigtwi060dsz/pxjgkjens0pimnyo71m2x5ezpepki/zvhfwchh4ehbxcchxg/4/rpcivlrudex9y2//gmuriuv8wd1qls0txo5xqs/qdyhwax2c72b9wpvnegn3ghngjrgn8a/2czevb/quy8rkurm5gupqekz3ibcbg2tvextxxe43u/jbddmv3ln5pkhp6bu2w7bafp7n9tb4kdcc9ohunfb4kueqqvypntxo0throxlkcdgeyb1jwspdi8dh8edojvpkiucqiesphpgvzs1kigxark8pl+etw8w2vpwso/gcz8hhs1ubuip1p5axl588evjawhqc8yvdepok8q6lbwrr9a6k/iybpp+su7vb1if+uml5bpnjdpbwx4xrkjtqsdert1r2g1m1xvoyvfyctdxkyzo9vb2ntjkczvk1yb3jjjc31/dodkygeivtnbo5gc8pb2pq0rwjfvhyoqk2w0kovu2kvkzlkmvbegz626jts1bcd8xgrutc9cnbtgmti4slooqxhpump5iyggeby6jluown4je1d1nzzlwemjexudvwz+djbeekz1qao5xyutdeshbeogvkzmylnp6ehoygntm/dqw3mtk4oesgeqnuflsxb25epvaovufjgth5aovzqnyeqfnm1avvxejqzbuxwp2gp66spahzjp7hqqoqa2trsuljatbzk8b6k1xpt4/anuxf5u36kiukv86ghxr2djq5xt7o+cc3dbqppvxlr56e/rdw/et32zvsjpzowp/b9ikt/kjn5ftp0728vdg54adwkb7w+5eqlzvlpivpyjlgrk9y+mtgzxzzazwhs0jxdaejht+gdcb973+nl1owsrcncbumqm146y3q57f8krzs2elk5aqoites9y8kojrazd5ojqjpsv34ze3vuce2wu8ntxob7c04csijoof+/bljbuucq6f53z4idieiwt/8fnz8m56enrq6oju5pit1/uvyw1tfig5q3yn4ccfwaoab/ghngntnbhwjr5jo5utfblacoh++wods3ty1awrgs5vqos/of6itrbw2tpaqgj9urz5y719rs0vlycxvlbwtrmqrxisb31e1tbuz2mem5dqrk87uvav+qv9zmv37tqvagnuoua3boaj/y/espttgvmrgjbmntp2amah4jsdjyl1/xenp6rygspwczpb60hzswaoys3pewfs+qg3ps7nykcoml1xuq4/ansuc08yfjsmp54bpsf0per7rv7zjxw4hbwdwcglgvx91ywfhns7msuk8flqcwbxx4yh72rxennfnq5zts5iehpewnhwisjye1+djpqrbxdned+fohqmdaxuvfwpyrjqsn/qdnvkkexklh/cuu9wkpic5t7f3pgdctgl5ztnjthbu7gyloqlygi437turpmona86pr2mpnpxqx19va2u7ejx8plordeun/ljbw3v0ofrdu6ejhpiiapczhc0tluetbrwqatvsn713f/au56hx0onmbf29g8cdqbovzux+h2nfycpd4+vro378ehdocix1rv8lotnzykrl5jq2rymzfmbg9153h+s4ht3phhj0dbaymwt+tlnwvo2+q8kmpvbwh2rutlbdc86o9sutk5oztbufh4xewg/0gygbgafcrbbjzddwh1/wep9odlyclytafurn1w7wmzel7p2rqbwvjqjikkn33bt3dqwmljxhbzmplfhv9d9p7vuell2hpbr8l+xcwej3d7ex482erzv7tk831onfy/81xhrxctbkpbij/bzgxvvbpnghpqymw1vblsvhj9wnffhv9cvlzwu6quu7uvvnj4jxzwoow5euvps43yn50glmmg+91gtwykplm9vpvgngolc7t1nabp7b/kls8wxhqjlz5pw6dyqvft4jr/uw3ujfxcfh25ofxsdl4wq6btsoubcqy3gp7qkftp3cdnpfcdwlfdfrn+ol7+cunxz6vio45i/1bgtfbztly8vb2nhqk0plgp+vqr+uzzs3z76qepjufvc44xv1fbyiv3vvbvyxnylt1m17zgyzc16munimj/es24tojfidhy7egnpktuwi83a3t7cvw7ysojoanepl8n0bfztde5y9f1otc0b0iztws3rnr6euzfwmvw0q+7g1log7wxt6+hwm3trxdvi5xlpt1hjtwtvs0mjvby8iaj+pjgzhvde3kygomndcqqfqthxdm282ckizm/udrf+d+vy+b8tfy5aygxfz7m2dpluhy/ixhjcuzvjnboc8tiiocayyn2+ev78/exn8vyxnwxojoovxrztyaqsunopsdn9bfnb+guduzjw+ljobwtqsjjm5zny9tgd1dcrhs2p8suicyxqufkytranjorh42rsb7dq16/mbmvkicqv2haddfayluvesen1bzz7xhoxsd2yd88clkzhhyuxys3zo/xp2v0+j2+ccvboi5/llwlpahiwfl1y4am6hefjujag1odioslsov6hot3mfrpgcwehl85+7wuta9tr5d2+dp4goubnrgel+w3ovged6wxng/nmcikplm6omazo6ohwchisfqbqygezyb/r9vhz50lhr5xhghpm6a3i4gj+le1jy3moe9bgdpq5lewyaz1shxku1ris4p7meujdemng76ljtxckfc/39/cemgqpogs5yb/q9xbp0ydnm2erbgxb68aoypu8nbf0uwl6ulcctqt2sd26/t/kuwpebj8dvqszl03w4good9+/fb2lpsu3oz4efvdh3pkcg8lkglp1trlhcrpivf7aqo8mb8m5rctaxr1z3wmu/elyyjztmzywtwc7rit3rlehkmjhhqr/hfmge+vp6ergrs5cugxn+pnz3rj9ev1fxixnr9xvnbmorjuvnwulefveausawfew8ytrfsgj+4pghd20qx98o9fgob21altsxnfnr1bht9qg7u9vbwufiikori58d641+omzmtdnd+ffsy231pkzyaiddy2if2wu/5zrgfbegzmqehwvnzkzwd3jppzc9mooqh5ykxb274lljz88febdawmbatdsprk/idbdo2hfxcalo6pdqwi0sfcurwirfeqah/au4tfevlc6u1rfokspuw78wonncxcv6shhm6k5w5e2337+txbstekqmz3yojydmdxrxq6qqtrw10flzrpjzg/1wysrkr999zgskl9wxefbmk1iijeg2vnthbrtgiw94gbh9hryyhtv4su+umc/qkdpzpdora5yzxqdx4ru9hz58eberuxllcjjnh8klc/tzndu1hd4nvlpxbqk+equgcklzcfzbe7/uxo4+f9vfaovg5yuvljarw7wbzuhvg03vegnzu4zos5r+/n4njycbafg37t8c1hv9bglpaeygstm4wrwm1rkzjywfnd73wpnszok5lbebvo05su+rmhypnsc4osszqvhs1ni3v1wqli5dghgycj6z/e7wszf62xh4enqogzr1mbwz9/3y0ceoeo6c8jjzokorsnpeg9q8qv3qjskovk8+k2e8uhjpx0odulxidxndmi0lydmzfkzapm7b9pzlvvw1s7ntxfwclvn94bs3gk46+0ufzjzqkgjlb1oms2hsbny6efnnaav+ktk7tgapep3z3kh+rem3ddwdh+0kd6ttdvr7gz2mzmxmu1ntotk5ankoh/vgw6yqqkpbraaltdtmu0xo0tryyo3khi/wxwojch+ppdonwnehfutxh7euzb3p5b2rymulf+hkaufd9pfqcoxi6ojiz88pzqes1hvrhkskjgtttdnce5ynzmaobx6z7bgsghw5t0si3d8d+hteicnjzcfdypakc/nfh6am5/71gmtufcuwlqsmdkqmbwzrjwiik5hmmwsvdskunfrbbuvo7+/xs756n/odws7p+lrwdwoeqzw7v3dqxn1ojsug7hupydfeeffp06fdujssn6i5mgrct3iqtzredqwh3ugqkkw87pzquddlabjgjdgk8eqam7v2g+d3tpbpe6wdjjdep/08zc5t5ryjteumruvf4gwayb0rlsopkde7tkgnt9/iimsiucc74hdvpgo4/4jlpmpzegfqhnlymqdwx7z4mhdr0l2droxf9cg+oqjrxof6z2vvybobbffo2st3eeun0h+ji4uzs9bcymfpaiid/jl5pmet6pgigyljrnzu7tm5fbvkphfl14yxmu6+kp1alq+zxnngcugnw1vvwvn+haf/2rp1a1zune/mcwj7z/hfz8jc7iy3vu3q6e+ge9/wmopcgxgxmzbx/jveyuewbhv/s68jsumvmerjeeryvdhf3r5g+o6nrgy1oagc/a86b0q3swfvmgvkvbx3t23u6no35180nw28kprqnlxztwp9fivtw1fk8a798hfsibtoajmbo8dnuakzpj2sbi/oefoxexl5hke20thrwwpj8pead2aojk7xovty8tzwsibl1cwmm7na3/79zpktzqsrh1kbxf6uud9hwlzuywdfjpvg6ktcvxrv8atossxtnyzwgkom7k/esknyvngkpqnw6yhdvi4+zcrp2llz54nrx9p1h5+9efoqcnjyl/i+tj00brv8emjfbfiip5xc4xiv6tje6s1pt+5uaxkuxfau3zzorz+ahyvfzmx0q1ev2js6yiv5cfddg41u/f39anllckoajimlrhmdhsacf++fr/gtgoei8hbinprvz6gwvxyaw77u6bxwspwvugtistmslnzjrw1tjsul48anm8pl+8+b/hhxjhdeixcvtlr3m41lsnwt4pokvghmfngn5grbyuxsvm7/spv1mhnusxfnoqrcinv/okbuqn5d/7v248es4mlumtnncp3xue14cy4qhjcq0l1hjyrqnspmsba+d2ahplobc+8dy2uyu2p9qn/i589mdqgreduqrhberole393+xjtjk1etwtxf35/17fljyynsmd8r1hurwb59+3lf1o5jzlyjecbywg4gydsoucfoirh+ctlzrb/tzhj0pp7vf3qu2bbj/vgd9pprkctpof/73phzpdxlliypra19/eznv3c3ydhfc16ci1jpa2vtufhzxtnqplzkfdnkoaicim5ffxx44tnbbizzoakqos/lyjup682rxff5ydx/vdj/rhnls3fxmts7u4xsu/zsjdd38ejri3n9ry4jzhbhpdknah9mzol+k+x64ag90wz1v/tl2rfqpctvrmjz5+zbwuhymqibf+eihfavxp2awbzm+ux5vsuoqwmweaetbswslac3che++tjv3gtisliqe0aknkvlxbb0g+unyezfmtgvqi6oiksuos7fyguk0nhrzz8/f/gs1fvfyyokgwchv/zsn/djle6gc8nxcmivppr7+wn+9xdb089yqih6p6ke1txvhtmw5ubdahp1vajlv/nmy1y2vkfbwdra2qknjezcfznnsh7hxdxvm4otu6vfnztzhgzcsnu5entdeipy4+tkvjaqn5ksyml8cmyungddatawbz6aecqfsktl87lezocdwpap5wo313dguz/oti07csbc+6z291s+hf6co1+ftlr0rnbfcofpww5fcgt9bauznwuw6jj13r8nfl+u6+nqh/phx+/ajb9m411xphasj+4wagvtrlfxzjn6rwkritzmktpcj7xnw5dgqebkni5movzzf2pubi4plqfnb96uns+/asqkaszevlcxlacehvwd4ls3+hufnm+6nzx9n/29ov61npwpgar2dvzoypkne013d7erzcsd869prdv42rv9uri5uwpvfsqkjfgfv58zc4klsqwj49fwisf/g3fkk6awbhnlv2f/vsex4ls3+qvt2ldhsu7lij5o6qnnfskf/ovri8oaj5ymt/c8v0vq3tocslruntybot+c8lpfvnby0nt1m+q5w8kfn31nbx27vmpiuev41cu4s19x69je/unl/gz4cy7qx07hzbcvfr1t33j5tp7feylffh8dwnzr2esqmpykp1jxq8dfomj2mogc9ubo//dx8cu/kiynjtwxplr4z/pvbf1t76axyg9alfdun9yr+2z4cy7qp7zv3/4st1pg9yg2trzjvbslsxsca4eb14cxfu+negnhuzdcpix1roi0sn4ikrbwgyhswnojrfpyb4ric+uneglhvreilaw3qqsf9uaitldecjew1hsh0sj6i0rawg+esavrjrbpyb0rii2sn0kkhfvgilsw3girftybidlceinewlhvhegl640qawg9esitrddcpix1roi0sn4ikrbwgyhswnojrfpyb4ric+uneglhvreilaw3qqsf9uaitldecjew1hsh0sj6i0rawg+esavrjrbpyb0rii2sn0kkhfvgilsw3girftybidlceinewlhvhegl640qawg9esitrddcpix1roi0sn4ikrbwgyhswnojrfpyb4ric+uneglhvreilaw3qqsf9uaitldecjew1hsh0sj6i0rawg+esavrjrbpyb0rii2sn0kkhfvgilsw3girftybidlceinewlhvhegl640qawg9esitrddcpix1roi0sn4ikrbwgyhswnojrfpyb4ric+uneglhvreilaw3qqsf9uaitldecjew1hsh0sj6i0rawg+esavrjrbpyb0rii2sn0kkhfvgilsw3girftybidlceinewlhvhegl640qawg9esitrddcpix1roi0sn4ikrbwgyhswnojrfpyb4ric+uneglhvreilaw3qqsf9uaitldecjew1hsh0sj6i0rawg+esavrjrbpyb0rii2sn0kkhfvgilsw3girftybidlceinewlhvhegl640qawg9esitrddcpix1roi0sn4ikrbwgyhswnojrfpyb4ric+uneglhvreilaw3qqsf9uaitldecjhw/wsaap//4zc2nthofz4aaaaasuvork5cyii=" }, { "boxindex" 1, "format" "png", "data" "ivborw0kggoaaaansuheugaaauoaaafkcaiaaad0s4fsaaa0luleqvr4nozdz1hu1/o28jhebkrabjrbilqbrraebnhiyscsrcsxnwqrerbgqnqpslerxri7icicikirjr0je9og3ttqplzxofzfc3isy3qwyrb9fp9yhef2++f2l1l7pwwjiymkaaarsyz3aqaavhaonwcebfugglcg3gaqftqbamkcegnawfbvaagl6g0ayug9asasqdcahax1bocwon4aebbugwdcgnodqfhqbwaic+onagfbvqeglkg3aiqf9qaaskdeabaw1bsawoj6a0byug8acavqdqbhqb0bicyonwcebfugglcg3gaqftqbamkcegnawfbvaagl6g0ayug9asasqdcahax1bocwon4aebbugwdcgnodqfhqbwaiiyd1dnbwygdnd3v1he8daycjtph6bwchz5kz5xzewb1a92p+gba29uphj8f7oabgcpngrkbg+xgyfbkz6ebmvimsmve0je+0aymjixp6em3v37877zypj+/8+fozzs0a72meydxnyhq/e/fozs5uagiito+ayjw5o/9ztn6j/10r9sq/imbo0uifh59xpviaxtmeuzivr6/fs2fp0anhu35ak3ip8d/d/hoph3/6kfjjihc3v7s0l5fxnz9majjchkl3d3e3qanpihurimvnyd3+nbjq1t/+iuqro+tfxgdkzojq6kzfrx2twwsaiuymejs7o+vr678cic19eq2wa9fn/yilc4uo8/kp1jb7ptwmdq0rkiq+5mecwfyyvd7xr1+fngnsjrs3fk+hqz8wzsxesfll2bxrjyswa6xzc+leibe+rgcyfppwoykpacwkfzgrkf68/iu7t9p1napdqlacpdetxxp1nj6vtubw1tfxd+yofaamxyxpzhsbg83mzkqqqqw4rvair0hktclnmvpxwhgre4ltenvd1wuiqqp//a0/pjn/tmg+vlqba7g6wmtr6xurvnyfvweatihpzt4wfhygbgz6zxqvz75eif7f7olnkdq/+pw8ywuko2uxu3ai/bfsxfy6bu7kk+bgjo7btm2rrq4eiwmhgokwub39/f2vlzxz2njynpl2y+//6gfuzi4+s/la3tqfqxx2pz61+eopghsavuipe1gfs/zgtzqwttqqh8znzdgohqbmxbt1jo6o1tfxz8jisfrldkxx/mfpl1fbybpqlkgczleq9fs7t1d+afldw7vpnz3/mdh51qyagacukacyztjfe5ewlp4+fzpop1nzqvrcwh/9zoi990d/vn1uep4x8fwssd/b52ve3sznmxg+kohozlq7w8mw5rnnzy5zsothhacyx3jw+8iri6mpqwy8zttmbvvexz5r71fvi6nj8buxm0ruxn3v1dvrdqkhpt3by3oj5awvly9ruvgukadg3bjvm4wfrvntm1ux9r8/+el619xvj4wmc3fxxb+/k9uc8eanz6wxt6cgimqxld79vejk5f3r1zs7o6pkadc+xu3em5vezvffn/3e9iasbu94r0zgojo6otk5pk6domxkli3ah8yxb+8u0ujc6j3g59vx18fwsclt2bo2jjaqq1tvvfxy5csm5wawvsbt7c3ll1u2ssytnm1x6i4evp7r+tdvbfu++smpnr3pdhp3dzeztobm5v7tj/cgvpc8gcjhrbv7b+ufuigh2dfamka1le7qsrw11dfxr4kc4nsb53qp/rd9jr1vke+cqqsel/3itgx/qvfawebxvxchbyezzpej/jssykfy9vtlzj1fv2liyiihwp+snhphwnjzmqsxlibe9gpwlthff2m2ajan2xq5wbmn3j5imwn5dx8bhh7u6ojo6ekrejj86w6tscqd+txnvt871lyvzalltnmjjvz2hg9vms6clxd+l1vultbwtrgxytghgg+mkeo96vai2+/xvx9v/0rmgcydigd/+mlpt09lswsnj5egocabg+tnzq7tohb4seeanxsehx6jwced/f0mh5789u3ryl88am5wv1cpdq1loaeab4ypls7/jbqppvtu0hse6dhlovk5+o/fuz9jto5ptiyp7x/o2j9qxjmwwxg5rjr9znnxwxm1ea6crg+otz9np2ugj0qlamtro0qb8fuxy71hmaazxi27uoi8yexghzwvtbi9nswpychpj/khjhq9firfyjrtred1qxtanjso2jevc319vysp+fr68vlyokqb8juw0cx5n5iimstkxfay9s7jwxl+ixy56uypls3tzwvdawmmzy5u3oj846o9twvyl7g9o23r2dhbcjs4/qjvd+8xzjsrufenuqkm5wdw9tdj2buluaumk5mql5g+yzqjrcpsltyathvkzcrqj1crtrhdsvz+ab7p01h+9kaumofvfcd9ghlrok3j5585odhq0tltz3g9yzqzmzmymkljawbsmve9+3r7yraydjz2gvkznja2p/7orsgnuwwn1carpvvxjeaj0app3eis3mjckmeqv50ywxjl1fs8ue4esiqzuak6q6sznbwuh4cdhbw0njdu7qeyk0xu74ryitbwvhlzgqebgb/7rv8sf3lq9wc3zg7ved4yhhv3djalkex8sle+lwpux1c8yjhh1/p0mdovaz057dwrpd+fterqfy9ezgdnr4kcab1t1luxsrerwyguirie+d/+yv9g//ly5ru9fefuzxlom8qxnmbcwk+htgl93g/l/mpw+mp99as1re/fgrlrmjutyugp8aqvxu64fxv37t1nzpxbyqea0tjxm95dlysr4+bmlpwvncqy6fn//xx169/sf5vmmfneonu8vbwyjnuki/ciru6rbccezvk/4omwpnp8zsanikffvnuzfpl5j0+e3lp1k0ooaawbz3rhqmv0dxbjymqqywtgqnze+vblqevflt5bfk+ysjklvsnpoxcirrt9v/4yqurqgltzpc9vabqxrh3l5e+cnvtz2zycngbprrq3b4ab41zvxhzemzmzczrn0km2vdqu0jbwwogwlzivhmflddqzqmh7y6smx+rzxmhq1bnunr49vzcrerguqkry53kx/q21tc5duossa8cxgrd6gxsbc3fx5tziszxtuwbggss0qs6qda83dh3o8tby1ipryrjwwmxfj0mz9axx+3/wo9jzip1cs0dn0s+cosep8zf6iteqpzcw4+6dvxv3njp1ciuhgm83zpsx5ebmwlpacudzu2m6zesbizj24p2dezknpmnsmcti2prambyji0nwie5fyaxokxqcc/ejx5zsyvpqp/7i+r9f132pt9zwaixffhywgzdurmkb4hmwxt7nt27d8vdwwny32eptaz3t8nvdn/gbmymbg3wdcrzpb2wis1i4bjaehqfiz6jkqt7k0rqu+fbmiv0z1f5amunirmhl4+lioqcggbifwkcxrb1huanu371+p6z47id8acso4zhhlberc9ollgdb7pxai2fyxeagmujhrvudfpktnetleluivsdrwvhygcwq8ml03qwlp+vrw7wu8puwub1jjfjxv9eri0eqyqps1w0xt1ummjzzn7nz7u52fvzq3vdkjaqgys1kfr4zsktzowfahmt40lvbe3dyzd90mbfhjtysiztn79/16mh+/fvnzmxqcgd4koaq96jexeq7ozuxcjeflr9btttduylzgq0lrtwfnj8se1jtu1nvvdujlsgndu5935avkr/4bhksvouz1wxlwbbw1awpd6danxhccutlyzvrub8xavbhzfjvuchbwrcuxnjausf+jj162o6ehvg0qf/lfnxvcmuwrlitnuyhskodexpliqlfx8tuanb29zuo9opla2hho7fz8ydpdnnzk5awrokc4d+yt96jtp06fxs51ltzdkcm0lwxeonu3te++uxqut465znoa6auwtcmxsjcplbqzr0keulhll9pbuasqd+cc/zcqkivujrhroqhbuxazudl5ywsa8aozq83iusi0whmzmadsz0o6g4awqgvy8vuxbzmpcjkjrq+njylmwxdsa4hiv7xf17r/gmtfq0pmnyg6qovf+wev28vdw/sky45phf6op4cphjw2lfjkdkatib6j4qojnzycljqvpkd78vjyomy5p7h7ltq9ip4dzcx3ayqqqqvr+8se+eamguls7a+ntwv8ivwhqln2dmlf0+axphwgyn9falnbabv0kysrfatwovyvob7nmhqpcrlyyswmncy19hitgv62toxa982vtvrmjfxnmcxvlsnb30166use6+we6nkttoxfcqkjfcimnnzstzd9erf3d3dz8yygrifvk8trn6jj5qphtuw/nv6azxtgygbennkw0s3j27uh+q/phnplvdcdmfqotjjfcmu1aydwx8evvoraix8s7jvwvnbkwgxbwuph/sexlu2bjmbmxtkdvgotbx6jyosldx9+jrrnqvbpddzflnetfvft8xzzruffj8tf9bs2ijhwm80mz5psfs71pdup8j0ecdyuglpl5p79vx1msoxyfl0+pa85siri4cohuljad+vivrvuffu3tt//rwuxddb03ssygn33/yl77tbcddoptffnyvl5ev59q18farn328d8zmyaqmrhcej0wqubo1u9prqoga6u9nsz05varsxstewmecjat+jiv3vuq4odjfdbx6sp3ru8shivn9q3w+xp5r1ldmo2uyi7mixvpzdb7ikhzutatxr88kwt5xrsbmbf3h5i6m9pw/mzmz2df88a0yug39ghhqpzja5duxy2zmyazxr5elledmsaym/pv/ky8z7e+htquntcrxv4umjoz3c6h3sefjor6ml8vwpftpnrnbhfhddd129erwliwtkdia2gtr71nu3b8+epstujust6s3kjxpm88/2tyu20xpve7tkuw1nbwvlzy+4odfa1g7vhwups3wj2kml9+2fa2texcwfkvbozw0k/uwxy8f27t2lkgoiild1hhuseull5fxtye9ogk7oavvit7yoe3fa/ocdugogy0wtbxwucgfaatb0qrgnrzdtppepum8pzkcay9tx3pzuzyvv0wfnzwcjisgfeldeoywtlamcokyuth6r+wuxqq6nbt2rda39rr6ahsuelueyxk0ikskufrsthalyrubq4hpmnc5w9xbdhfh89m2ot9dywrkvly/ehbgasahbbxkj1ndqygji0vk6xx6o/xyr+yhp4wxhx7kpsfjkrhhedhum4tjejjif7zn2bv6ezog2r1n+3w1nl9f3a5ufmjx5mkpayc2b3bfc1q1b5+dggjidcipi9r4vgxtrb28vwyfrrexnz460zwujrhjic/dapnznx3dn/1p1vxvdxv2xoopqvqw1/3hoxwjuf1khj87ztimte2njbaalm0ts4oktj/bs2yosawia+pue5evrgxgyui1jm7wqnwlu4pdgmhdrsluzt6qcpd7roizjpd09zeljnh4elnjk8qiokqvpujvq9vaoi4obgzponzpto587dw5gfh/pvpd6/6uwg4nmzmbjn5pnvcy3sg1btmtpznmrsmoenhjlwrvftkucw+s4omguculqmsc5asw1aa+1gnvcxkchjihofjprc2gvgokvry/do8mdce07qveo9+/fw1hydgumuwi4ke1wqkwlkqixzlecm2xo0+vpg+obcbzvfhxlqatla1/dwyz/ou563oab+synpjfx7xmu37jeetnsy5ytdnz2kdlgivru6j3q0anhli4uwp1abvpcufirvnwmkugn35y8xh15j8we7/nefeuvofx1zotvrmxn7x7nxirlt5i+elx93truecuo9pwz6aampjt27edjarpld1rvuc7ozrdu3fqf65ctyicqozogon6k+6mkxuuwx2glxbymx8r7b8gucivac7lxzy9elv2eilot7ugon1svjaq7pibd0v5xaahgfh8/vut6j+7nampqwhheaknms0ocdeoeumq4/rn7htmf7y6+k/bbamowjl4+sitsatbb4q+pci5v1ee/xnck4+ieum6c9upvx3cggokcv78/4in6wpy+93qpyszmtlky4i/m99t0nm6ltckiiuryf+fuxojsigzwd/hd2praisokurge4mrwbjrt4tvfu4n3pm7eonxomd8/2ojikkudt2/t2lhd2hr1ewtazkde/3x9+nvpt88vgytcnfxyelzsgrxh5ybexssjikdtvg1wdc9oasftkbxot7dzgllc8wjfc2zim5iq/fgj4ojinds73rwcgffmyfdvp7oxsqn3cz+icgsf/d7ekkwd25ywueddj898h/3j+hiovq+tyfkoq1nj3t9jwz8kylxodxarvlreieqsrmh0dfrlz3nwcfbtu0ojakwi6v0rdq0nzmzmds/qqopupvgkprhijnld93dnc0zlyhjplj3pa+/dmkxnujapbru23sgexzmxghvx2exnc6jnrkyijumsin3ed+wyqqrqxysxwvhql1sa82cfr0p/io+pb+pgjziakrzxtvh58bptdxnzgn/bwfli2vtzfgvctivvqx2spahzkjno78ewohs7w9s2srnwzbzfmf1mcebdcfrn66bubhgv2rympiotkjermtycu1zscfaanu7xq9tvbjapohv/a39//6cgoa2tntipo/47sb+kr325tqi96mzsm/vl9umyxtlvxu+hik5mzaynjywishlolzu9qbpqfrviigiba4hiihhrtaxq7382mdbw+vtp+nb4c2xzn6v/rkxlruvd83ypjytnqf6onjs0hmn1boxkitqkfqtvre+lrmdvvuyqr5h33puii7s35oii4rk83m7ozkpkqav7wdicen+u8vjymzoz/rr+p7loalnqn0jdyrlkw2srlaidyrdr2nciyrj6atbogbbhoze6whpidjp1bm4ko30vv/nskf3kzu1ntt8/p5qcmi7g3vtzcqokbt26lsxlph1zoqm0q19uh2u1q+y0txmv87fvb7cnb+9n7zeeb8za2tfqvulnz2djdicmtlzunql9kalsfel5mbepzqmdikpkdk9mnswrj7jla2zursehgwmdawswlgasb4wjohszws3n7datw0asruyq5ohrjftgta/wnvy1ntc4v1zsly7heh8/+mrwt9uxtwovp4phs8zmzi9fwtowi4otlczwrvuhcltgg4n6m6i9vf306dm5d3isvs3xzlilmpak/mnrzknipgipfj/g7ufgckyjh5cskykyg1fwuzj29qvyuaabu6qkbswqtbdwnburfj+/q6urlnq9pfhmon5icnjylc0tuqu43ea5sznr53i7ptt5lhn8ipfd2mkwutq68vjyurg4n9p32q19dy9za250bpivx6fz5oyqkdbkwvmtchpiik6urre3n0oo+dzgdqmsntw16ojoju4bdcsntdnn6yn0llqzmmfqttaxd7cl/i56vex6ggulzg4ptetnd3r1mzw5huv0fy3bqm2nuvgcst+utggmpnn7ge6b+dna5qepxrnzkcgo+pj4mjwdvg04e48zozu7sn/ix2f9ekgedqxyfku+ualr4mhgghbapp55oizxdq/zusisaivmeysjy0tujyuxkpyyufmybgwb2udaqkq1lsit+syzm6txr0y5kvd1ql3hul1dnywfrdxzkls12yvisxdtqgtdlfmtvsarrc6n7g7vxng8dfjkxnwsg8mfwvodk+tyn6uva7u6i44obsnlg/tzizpjbm5ufarsvt34gqdeyy8hichozk6squy8xnn010stkiycq4knzhr5afvrqmk1ntxd4ujcajuzn9bpj3mv3u4onfld6vmnlbbhfoophnwhhixduttd3r0lb4w5qpfxehgygbwcvordkjs1ozywpiwibqnt61+sx7txo3w7ptp3ydhw0tlflqsw8yktzi1osx+cc+klt9l0x37r+hk7n9ra2gwvz4gyzzcimklavb+i3t5egxub+jd4o4phd8vurkylr47fl76pn53/1sjbyixioibxsrgrjsmtwjgej77e7ivhkymsjqowlsr6+ig7vy6okjzoblcxsvm2bbnkuyexafx+6vb/lwjpsu5ymoswt2geyppxlpdtizo+qp7djq8bgxpxho8ueeffm2huo9gtnh/c0fd2bc6u7ekkokk4ksvrg7+vkjcqp6cn4nalgajq/y1eruu5ojoqnsk5znvenf46pdj8kp7q/fr7bxuo2s+xr6yobgxq7bkx4esbyutrxh/nxnrqe3vkuvxztu4gjiguu3e363rodz/8acokxxhu+5vy9ps8c+fohqenlrmteamqoismxxt2fojw1prckboswzcsr58skcnwkvvr2y2j4bkbb/gzz/y2d+6wrvymvpe+anre8zejr/bv34+saxgd9f7wwltbra2tm+5mwkhybjlahjh2r/sewbazfj/ugyup2pvycqxv5ofbx80au3rzxcwleeqx0hkrjr0dlki+9rz0kpxs1mpra7to0sleawnfboo9pvly8iwtlvlzwv00xbqfkpzli5fidm/t/mr91s5ye1xval1thy7jdakjhrtvrj0dbrh5qz3n9u80cw1hj8s76ia0tifl/uli4t7e3jci+jubf0lhh6ioqjgreys4i/kz8/zyfo2p2tysjf8gl56++jdcocelj49khbhgf9gyb8uk1tahghqdg5phn884wblvxfsersgf8stibljxnzclqc7m4mlwipkkjatwbyhrbawyna2trv26dcljoeclwnl7na0pdzs4oerfrrmngb1xoo6yltmqustlf8sklhddegvezqzdkoegyziuvg60lzprxkbmb6yi5kvu2z/x0jcte+n2ptpfevligxmtk19++qulb/wjqddtqkmpsba2losus1gzwsg+ajetkd/ipsbgq0gjymlez1snhmgtagj801hxzz0pdimqtomtlpptbsm/d+kbvt7mzlz316amjiqvchtffd1qbyasnjxsy2mjjas7zngu5ud9p9r0jek12ru9mns8ttxp1tqajdyticgndt/b2tcqnh90o/sy97x52lr71bhfsukdgzekpkrgrpfxavvmoleuxakodl7cs9hgzqzla2ysidtq27dx1cyaeo2duoprtcmmw4o7osgucjsvuuz79pzw3icni09fnm3wphroteyub968muqlousav4j6m6oenp5z584lxe34ddavv8n9hpj2tolpkcwjwlzctxfenjppkozhnsys/btkjiqdmv51ruf7+rw4lekoj3lg4jz1gxbhfgc4orcnpzqamu7curmlb/wr1jt5lzawwltbt7xpsve315mk9ouziuq6n3hevczdqmzgzqi7ty1ngiahr2ydhp4qwxy1vcbn+azc2wftzqkijsjuqatj8xtv6oiwt7fx1nreiqkjon7mliymxt7exq5ejjqhksmltf6lb6jvcpzhikaiy4rhbnrskisrgxv+vzpvegk1awodfp4feid+nvdnwxybs4gjimtev+4lcpcxl/f19evgwzmhon4tg7e39927d1f1rrkcbcnogvqtv3f78baebx1dff7z/rckl8qwrky3lyxjyeng+rqrsdx9cw5ahmsr0s1b5+3fjz6iuovobsmjixsbg5sc7xzue8jobm6muqkzv2eykjpsnyk6svdm8c1tuafkbeqflhna0sucyvgjfzczecev+mphiaxhr0wypq8dvluzfnve8tkqt3bwyzmnt23bhnhg3yeo9wstm5trbw099g7iya7dnclzenpojj8jqgoyldqmwbbqx1epyrhdxijhfgk1a+9gt2tr1fqg0mj5gjnuc4gjiruqkklenn19fu5otjci+etbvsek+/fve3p6qreqn1u7o40b6cvnlv6wg/ehkzusrdssdsofxhg8va29q0ycqwdp6prwjyfnbz7ovc23cnh8m1zt0rbav8ff9v4oulvv9fpzq5yr+f2bek9ug4odli4uz549w9+3/qtkscs0nzvv9qbt5wllctulleewxzcsyncqtkgwon3dldochj4x8jojwxtbz/n+/q1x7upbcfdh73emjy0tlvffp/1oql0ntqqqkiqvwhhrak1m/ep0hxhtfhn8hyoddir1hhs8bm1txtcslx8mvrpglv+eice+njolffsy2g8/ij5+u21tyaufp06dmjq0rdwwwon6e0fqaqq1tbvaqqbvnao8wrklanb48fjcstt1d/bj7xoz51jdq6muru4wf+cwrhpv0jnq9qtosntjbarkwrw76sxzs1dsojbs5ilxymgijcj+nkg3cysehfy5ckw7tfum6pkpneh7g1f1vb14dackv8rtntv66esxhctu7yblsrlz8ahelncwreqhpe5/igcwxovukzgxgfgsoafx8ejflbwcg3otsldxl5otu2ji4vbb7qfkdycmpcqensg6mynnxs2fn4vjwhig0vhyybqkc9pq1szg+md5ask870snts/by8yh9k9gxsclznt39+/ff/ik6gmi4of6e1bjsymdnv3dq7pz6ucwtluimezno/rj/qskvl3xv97u1irjeieqmk846hao0wu3ciutnou/kzt2hhfemyle4nz2zm7opn36niwo/ioon2hfxcvrqvspwqmzamfl+ovqojogoo68phlbgnts+erjlznvlvundq2dyujcu5b2u23ta4gsuhjgd2gbjadh74g4xqituhjy9wi7o7uli8sstht7wob6e5yvr+/9+/cxti+0ulhgy0e6dh7x9g5x8q6rkzfancd5gvmxhcvrozmpfda0lehv23mi8ooibiimr/pby+ykmnozvnerxto6ojdafor9xwhoahbycsq6k7vv1r4dmjsq064uxlhkt1itvhu49ofqzxcgyw2cxhysfitpjv/ytv55tognn7zpyjt2auzcxyv2rnqun29p+oodbw+amjgghdyeb/x+xmrnz9va2vzn9nup22mlacommswahdjct0lt89p2q6+vxzg8r0ymb+1dschhd1glotgt+9n0zfkntbfhfa8pdni6oxyvfx3pi4qh3t+xhw8fent7k9qrwklaufiq7nxreusoxr/k7m6kqlon5yzl8flwttyomxfotm1bgui0imlg3/tvsisqzrd3lebbvdm6opixl9fd3v1ksgolaikcen93bgygpdw8ymjivnwtoqf0gpovwz2sr8vwxr7mocjiiriigylllythwmwhmvjnwtiahpefhdp4vpdhn+afmj2ctkuchv6451riokwlpd09uximhkj3d6qioslbwah0sekjprprjdcjprllurmxuetp1b+/5h5baxugyy18/hwzufezvqmjtch59iqckrf71ximkl7g1r8dfetikcohdyme2eqb9f6upask2nnzcrdxn1u7o1dolkoufzb+poh4o4zhhxuou+dqa2pqqiqresqluewqnot3dvzelybw1b2pomtmmjfvwbqizutxij3o4eqcyzivldwkfagbtjm/qdcgxb9+psqkrlve9btqatfuppuqpr2lhxiovxyo8nbyxi2+gsow7p7unjfxdrslabrupklw8smpdzluzs+nnhoxkebja8rkgrzojygo6ohhiyewxesg3ubf2tvb3d3dk5otn/rsokjwboumsskrbr+/bz5jlkuwvb3wnv8ip4zhnnikmkwkhq1pavpoc3jeqdcrkvdt1qzvonzccarsuvqy+/e7r19bswkfq6srsg4zg3qd/yoqknjwckdf0azvrjell0dms0qxcq4mxjnjzrxdk81nzrioduwr4huxr4x9uf0goywmtibl+h5j9bhfwr7uqy/ijh49ssgrxvbv8gcvxryguqks1rjwqlyqgioouu19tudfh03osditcvqy0rgqqqr6uvoucxeutbnv50bb1ptr7y214vkpiidpkunqoaqndhswuz2n0wg2njzllixbiwi2ug/wcf7+/g8fptrq0jjtmhpmqno8llyffdllzddld9ccohmt52eyvtrtg76atbyzkllosstgy071ofntbcxekk4lgtlspgrcfbuv9fb2rnxtlxlavchfqqurc3v1zcvl29673vjogdhnp9ffodhby4rgg8up+un9oibxcxcqkrte+/zmxvjwgqbe1hshteu1jh6zpbnplzf3d253h9346aefnjycuhkybmz3bn+ltcavwrvkwvk5odp4csjlci9fio/xhv9aolrhfi+l1aqzpxp3dhfs0tjfpzzcxlxej5fqdokq55vamnot6pbuzrflzypco1lzrwbjm7zfk5dkbdgj7xzpaaamppycnhpmoo5fo77g7a0+s3h4+iulfyjvfmvzlrp4kv63roiuopz6cefvgbog888zf64or2hpaekqr13n2trx8ot9tzsdn1hepyqzwyigjteahvhc2nhoz2enp4d0bz+oon7gc/x29vr4+mtfxs1sxnhc6tg/o9joyrhlecczj4tyi17xu07hpgayvj4wqkzisxiirwz9354twxgleiikr1nty+ys4oji+ptk/oblkpkspj4+iinqxwxug3wzhmddxfzwj/i+wfu2sg1bthpicpdd/jzmw3j70e22tjycw5t4+cismxbj39y/jy2+9yrtjcj6jegjikvcwjpv3ja0njxwi4qh3oariymjdg4obplsvmpwoiji00vbbtpmekyenj81uti5o3qmtqa2srkyr1ycg+3x9edwh6flyvhvvrrw4oxffpu7yqmhj9llmyk+f+li4kxmthbv3o2s8y1bvqhjwslcqknd5arlzfxmz/lnrinkac45nns8ybjbd76vwtqdhme7urraxmq40cyfnnbpt0qu3h36nuvcxmxccpa6okpat10dq5dhw1ubvb29lpywsts3afugsfpbw729vdps0la0rdikciilfwnmaehrihwetykawp1fd3ihedecqx4hkskufrtjb4wt6rffv2khn/nql9cyskicuvz75nvfykccnjyfnx+tjyigeomxkj+f7+liuv+i3ktj5kczp6fedy8mwyrbhfahgliml+pcbg5uxjg8tvcqd/ndjzc1kw9kw1+wv566yxdevn38adfkrddcom/fyvirxvbvmgziy2ndxfwemuhl2zyaqhooubqe2re3x9k60s6qnt0nv6+6qrqurg59nwvvym9tpky2tircjefq7z71nwvz0badeptysehimdmzmziyqsn5sqdeycwndw8hbqu9fvxypvrlhpijcr6ku+5l2svtaac/sh24rhtzjv8nx/h+/v5wmte2th0dan34k5krj4yfsc6yoxrgskyzawxtd3u1ycudtqc7ojoy2ziyqdcyezu1nz6enowfhevb1++dtzdleum7ipjiji8sd49sdy1hrful7/d292i4vsf279wsleirwxoakyollr8aieft19m6fqzxrdht5yve4cavfrv/f3/mgvemi1lb2opn51+5cqw8vpy17guxey5p454mq5zhog2b2il9s/yn0zj+fftr76te7xo3848mdxqx96ctzp3gm2mhzd0mlhls2vuv7js3dxyiq6hwmvrlgf9mashdzxnv33scpnjv1awvr8/wgy0hohudrysiislpz08uezvxmvcvvewjet/5/mjc0bl+mncn9w1sg/5vnauygofkysixnqntt7eb1wevdbkzs+07op7jajy2dprafnfxljsuu6dobd68gsuhhdqbfhu9pt2xll169eqvbk3jqojres6k9sp3s+/az9sl8apc178uws6b//uoneyhskktwinvlhpsehjjesimla1+xhp1rhf5ocnbc2hoymnjsuuf6z15ffbv8i2ulpz6ehhupqncmxphdpntiglnu88gvqstlfgzqhfa3tao4vgtdy9zuhix1ift3zpabe7pm3i1dczgrhfmto+v4llz547xigkkzx4afd45obmagadlw5zhfgery1fg18ejpj2bfy5nbc4afud0d9hlnzc1ndrubfgnzwf3njuxfniv9olo55ocnfnknm7c8izrsf4+ftuwvz4+3d3ddb8kzevkhbv3u1nted9pzxicvce4uh379o0bn6axttdvnluquecjsmtmm002bse1+2v7lxjdhgfyz1dnu5j4569mfvpx8yewkcogclzvlzudbzdpt56hf4le6m5qemt5uro1req3fworvziwojjt1bx09k2h2apd7zi7ozu//c+hcuonxkdzc7ofn19mzqzure5b+ymchehryalyaxwkhvqevw4vus05yiljenxwcjlcywh/1hdusbxrd0p9bdmnhldyeel/v72c/lpvubssd5lnbuzerobyuj9/rhhjzzt5/r5cwsk6f3wfz85mxlq4rkwm5s/igkg3ge+5ubnu7u5nl5t+k/tte2utsltfuj9fsswd2jvbplzdmh+hpbkfw7g2yr9fzzrxknq9yjveiu1sodlb+h/eepttvucvpnms7+zip79q66t5p0cu1yylpdudhfrwqyn6jrjo8ej/hhqd71dmtiynpyd3ebe5irnuvf2uklwlp/7mec49l6po3so7p7q6uramtltcnov/tymr7hx/pdchta/h51nhdcu/mjn0o/uelriuwhpvrsigtfn27/7riok24uk31me6kisvf9s7e/+bp/4i6g2+a4odg1evxo2mjjtgpi8rhpcms6okrvve2wtashkyxl5wwyvfbcowvr6+cmguy2uuzr25g2x2/yd1t4/up1fveonuuvexeuz0d1e3zp4dsw0mrkcu9zy3j1uebsnjpqz8yb69/v9/c+onakmqqsrx17ekpgr5w/jf5x7lyunaw+6c6eyl+epn1bu7+o6rpcppqp8zibju1lke9mmx4z+u96jk9pqsu7mjyujadtrkfz9axkzwxi0fts5cfzpjdlzqdv+masyiksnp5uzmzwx1eszrw3jdyopildrldcu8dxk8qzytqifxboap6yuzvzflzc+j19cjhidfu3n91fpznwvidhv64l9p+vkvdqz6u26pi6g3ydrz58+/f//+xt+9avwb215vs29ozzhkifpomsg16donk6jjdxbdmso6vudhr46vhbowsl+9heugaxmto94kiimjlypp6omxym/lo9ppkiffa9qbmkkngzbcuxnh66iwi5ujzaylryfgcbqnj6frpfdbdsg9yxstghkkpkruvvxfojoml5cp9vv/avpbsxgms1nfc5oeuycpdw8hj6eioukmgtoki4uxsjkmutufegpmrsattu1nz58/36hfcxjgcehpyodwimnpkyvwxtk+hhvhttm2vf1vikqketmlybxlxvvvn5nq19jsebxcm/bged9+6fub/vgjgcmt586dy8vlm5ycxfntw/bbji2on2b28vlyfy9ephhixp3j99e+xpus5hnduwwsbmayxr/k/fp7xe+bjyecfbxzneaqcqiqsrpojy2f/l388aocoedxhfrke/f+3w32ndexxv3dgygbjiym1tzwho9zrec9wcswephiqkioha47lvfcmk40zmnnythkklfsstvkbyqaeyz5zhwkmliy7gjdmefhnpksga6uv36+njex8aqpl7cihuuzqfl/xki7c+zmfrwv+vr6gokc3t5eho8thdqbtcrgrkzbquezd82kslhtc+wbehsyjtiw0fbx9v8w/mekzssznvnarlpbqaecj6a9epgfkv/xnlv8s0yrcxfxkskpiyulfxyw4jjg8eeigu+9wysunz3t5exv8apji9qwi+l/2mzqnlg2to9vv3bugoi4gd2oodcmda+ocqqqxfc5ceng+vqzax2djbjjzupgt3zjlbh0sd7lf3j1lcxto+7qlxf5pqto3mbculdxdw0n3rew7yb55o9xp76se8lwlachajmd3pwhq2+oj/uaq4aghqamptjbfon3xsjz56j8m12fkvlucnniyypizuomg3qdcwz16twphj3aylfbj9fv0ntdrr1fx5oqxx+/j3ephy/iv+znx+wvjiymkysrkip6//79a9eubwhulakn6a6u/tlyvpawnydmcnwuzlo2fn/rzmlp6zcmjam4oadeuffrcfhirqzddkt0jewmbtn+z4j/ry/ok7orrpvdm8k3c3fi/8wmk5wv/emcuhzhw8lcnnfxy2zcxpqxtde/enge6+db+tr61s8/p5w5m0z/pwyxy46takcqkpjydxvnsunx9prmsezylr19s9sntjemlqut6k4wdjf+6yvcf5rmls0tffbswyokpbvurmxaotoxgnwitvpfxk7pbsfv1cqufd6exvzhclyca+lq0dg5d+/etq+dnyff3prqu2jd4l8/85+rcdts28/fnkfxvzcgioaah+8ub8+w/py/fqctpdj+4igikkvpr14tdg1lhm7d2rsq0kznmwwmdk5du3yh6ckj9ech5q+o/v//xi1fk7vgwlkhoagbgufywfhfqv7gegpuf08+6gtpkbhyutkra+badckw5mp6v0ef996asiqkivz8/bobg+pj4x1lhet66/ae7/nhm/aepxuuxfuh/hcwfoafhb0rnfbeyzfnszmfqnnl4jxt2rqxpfwxabfnglaufrx9/f0phdjq1tb2dnptdar651+nf5qsktlsput5n0z3dxxdouctuhbchn2gegpimzawgbwcfpto0cjiyngjr9ps0had8/lylcwsghoanj17tnxrviazn/rrcheovipd3d03btxoa2vbswoh5n/mppjexxljy2nywbijrnqxywfiymfvax6tge8ihx/fwymhs0tlr1y5qqfqdu7cyc7+uepebt68mzubu2phjtmzz3/lwxwzcheovjtycnjuklvotu7w4cnpnz79x8/hxcuzgxulioqep39+anub6g2+x/r6+kfbqv1dxwzmzllzwr/9zh9us0ncqpytw/bnjxev3hud711ra2tywnjawmcohtumtzs2eu894w6zpwrqdcc/fbquhiwfkssrx8xflv++fmldzn8u1bua/3rx4sx+/fsdagim4qx4x0g9afgfxsbgiseh430uywpqdqbhwznzaagl6g0ayug9asasqdcahax1bocwon4aebbugwdcgnodqfhqbwaic+onagfbvqeglkg3aiqf9qaaskdeabaw1bsawoj6a0byug8acavqdqbhqb0bicyonwcebfugglcg3gaqftqbamkcegnawfbvaagl6g0ayug9asasqdcahax1bocwon4aebbugwdcgnodqfhqbwaic+onagfbvqeglkg3aiqf9qaaskdeabaw1bsawoj6a0byug8acavqdqbhqb0bicyonwcebfugglcg3gaqftqbamkcegnawfbvaagl6g0ayug9asasqdcahax1bocwon4aebbugwdcgnodqfhqbwaic+onagfbvqeglkg3aiqf9qaaskdeabaw1bsawoj6a0byug8acavqdqbhqb0bicyonwcebfugglcg3gaqftqbamkcegnawfbvaagl6g0ayug9asasqdcahax1bocwon4aebbugwdcgnodqfhqbwaic+onagfbvqeglkg3aiqf9qaaskdeabaw1bsawoj6a0byug8acavqdqbhqb0bicyonwcebfugglcg3gaqftqbamkcegnawfbvaagl6g0ayug9asasqdcahax1bocwon4aebbugwdcgnodqfhqbwaic+onagfbvqeglkg3aiqf9qaaskdeabaw1bsawoj6a0byug8acavqdqbhqb0bicyonwcebfugglcg3gaqftqbamkcegnawfbvaagl6g0ayug9asasqdcahax1bocwon4aebbugwdcgnodqfhqbwai6/8faad//wlaq/ra2cowaaaaaelftksuqmcc" } 	] } this output png data can be used in any context that renders png image (within the src attribute of an image tag on a webpage for example) leftovers the leftovers list contains any items that could not be packed in the containers provided in the request in most cases this list is empty for responses that do have leftovers, it could be due to the item’s dimensions or weight exceeding those of the provided cartons, or because of any additional rules or options that were applied to the request, further restricting where the item can be placed here is an example of a leftover item as part of the response "leftovers" \[ { "item" { "centerofmass" { "x" 0, "y" 0, "z" 0 }, "color" "red", "deltacost" 0, "dimensions" { "x" 28, "y" 4 38, "z" 23 38 }, "index" 0, "message" "couldn't fit item(id 2 dimensions \[28,4 38,23 38] origin \[0,0,0]) into any box", "name" "big thing", "origin" { "x" 0, "y" 0, "z" 0 }, "refid" 2, "sequence" "", "uniqueid" "2 0", "virtual" false, "weight" 17 } } ], in addition to the item attributes that were provided in the request, each item in the leftover has a uniqueid and a message , all of which can help determine the conditions of why the item was not packed